(上饒金剛砂)廠家(上饒金剛砂)
碳化硅至少有70種結晶型態(tài)。α-碳化硅為常見的一種同質異晶物,在高于2000 °C高溫下形成,具有六角晶系結晶構造(似纖維鋅礦)。β-碳化硅,立方晶系結構,與鉆石相似,則在低于2000 °C生成,結構如頁面附圖所示。雖然在異相觸媒擔體的應用上,因其具有比α型態(tài)更高之單位表面積而引人注目,而另一種碳化硅,μ-碳化硅為穩(wěn)定,且碰撞時有較為悅耳的聲音,但直至今日,這兩種型態(tài)尚未有商業(yè)上之應用。
因其3.2g/cm3的比重及較高的升華溫度(約2700 °C) [1] ,碳化硅很適合做為軸承或高溫爐之原料物件。在任何已能達到的壓力下,它都不會熔化,且具有相當?shù)偷幕瘜W活性。由于其高熱導性、高崩潰電場強度及高電流密度,在半導體高功率元件的應用上,不少人試著用它來取代硅[1]。此外,它與微波輻射有很強的耦合作用,并其所有之高升華點,使其可實際應用于加熱金屬。
純碳化硅為無色,而工業(yè)生產(chǎn)之棕至黑色系由于含鐵之不純物。晶體上彩虹般的光澤則是因為其表面產(chǎn)生之二氧化硅保護層所致。
物質結構
純碳化硅是無色透明的晶體。工業(yè)碳化硅因所含雜質的種類和含量不同,而呈淺黃、綠、藍乃至黑色,透明度隨其純度不同而異。
碳化硅晶體結構分為六方或菱面體的 α-SiC和立方體的β-SiC(稱立方碳化硅)。α-SiC由于其晶體結構中碳和硅原子的堆垛序列不同而構成許多不同變體,已發(fā)現(xiàn)70余種。β-SiC于2100℃以上時轉變?yōu)棣?SiC。碳化硅的工業(yè)制法是用優(yōu)質石英砂和石油焦在電阻爐內煉制。煉得的碳化硅塊,經(jīng)破碎、酸堿洗、磁選和篩分或水選而制成各種粒度的產(chǎn)品。
制作工藝
由于天然含量甚少,碳化硅主要多為人造。常見的方法是將石英砂與焦炭混合,利用其中的二氧化硅和石油焦,加入食鹽和木屑,置入電爐中,加熱到2000°C左右高溫,經(jīng)過各種化學工藝流程后得到碳化硅微粉。
碳化硅(SiC)因其很大的硬度而成為一種重要的磨料,但其應用范圍卻超過一般的磨料。例如,它所具有的耐高溫性、導熱性而成為隧道窯或梭式窯的窯具材料之一,它所具有的導電性使其成為一種重要的電加熱元件等。制備SiC制品首先要制備SiC冶煉塊[或稱:SiC顆粒料,因含有C且超硬,因此SiC顆粒料曾被稱為:金剛砂。但要注意:它與天然金剛砂(也稱:石榴子石)的成分不同。在工業(yè)生產(chǎn)中,SiC冶煉塊通常以石英、石油焦等為原料,輔助回收料、乏料,經(jīng)過粉磨等工序調配成為配比合理與粒度合適的爐料(為了調節(jié)爐料的透氣性需要加入適量的木屑,制備綠碳化硅時還要添加適量食鹽)經(jīng)高溫制備而成。高溫制備SiC冶煉塊的熱工設備是專用的碳化硅電爐,其結構由爐底、內面鑲有電極的端墻、可卸式側墻、爐心體(全稱為:電爐中心的通電發(fā)熱體,一般用石墨粉或石油焦炭按一定的形狀與尺寸安裝在爐料中心,一般為圓形或矩形。其兩端與電極相連)等組成。該電爐所用的燒成方法俗稱:埋粉燒成。它一通電即為加熱開始,爐心體溫度約2500℃,甚至更高(2600~2700℃),爐料達到1450℃時開始合成SiC(但SiC主要是在≥1800℃時形成),且放出co。然而,≥2600℃時SiC會分解,但分解出的si又會與爐料中的C生成SiC。每組電爐配備一組變壓器,但生產(chǎn)時只對單一電爐供電,以便根據(jù)電負荷特性調節(jié)電壓來基本上保持恒功率,大功率電爐要加熱約24 h,停電后生成SiC的反應基本結束,再經(jīng)過一段時間的冷卻就可以拆除側墻,然后逐步取出爐料。
本文詳細介紹了罐采樣方法及其與氣相色譜/質譜聯(lián)用技術在VOCs檢測中的應用。罐采樣技術罐采樣主要是通過罐內負壓自動采集現(xiàn)場空氣,能夠完全還原現(xiàn)場空氣狀況。氣體樣品采集后,在Summa罐中保存穩(wěn)定,尤其是樣品放在經(jīng)過硅烷化處理過的Summa罐中可以保存數(shù)月。李振國發(fā)現(xiàn)在某些情況下,氣罐中的氣體混合物組分將發(fā)生改變以致不能代表被采集的樣品。氣罐表面面積有限,所有氣體都爭奪提供的活性點,因此不能確定存儲穩(wěn)定期限,幸運的是在正常采集環(huán)境空氣的使用條件下,即使儲存3天,罐中的大多數(shù)VOCs都接近它們原始的濃度。
淀粉廢水是以玉米、馬鈴薯、小麥、大米等農(nóng)產(chǎn)品為原料生產(chǎn)淀粉或淀粉深加工產(chǎn)品(淀粉糖、葡萄糖、淀粉衍生物等)的工業(yè)產(chǎn)生的廢水,一般都屬于高濃度有機廢水,是造成的主要污染源之一,本文將詳細分析淀粉廢水的污水處理工藝,希望能給大家?guī)韼椭。主要處理工藝選擇近日,環(huán)保部新發(fā)布了淀粉廢水治理工程技術規(guī)范(HJ243-214)。此標準以我國現(xiàn)行的污染物排放標準和污染控制技術為基礎,規(guī)定了以玉米、小麥和薯類等為原料生產(chǎn)淀粉及后續(xù)產(chǎn)物的生產(chǎn)廢水治理工程設計、施工、驗收和運行維護等技術要求。
后來,安德里茲(:ndritz)的轉鼓式直接加熱工藝采用了氣體循環(huán)回用的設計,使這一缺陷得到明顯改善。在其干燥工藝中,熱風經(jīng)過除塵、冷凝、水洗后,85%返回轉鼓,只有15%需經(jīng)過熱氧化除臭后排放。這減少了尾氣處理的負擔,更重要的是大大減少了外部空氣的引入量,將轉鼓內氧氣的含量維持在很低的水平,從而很大程度上提高了系統(tǒng)的安全性能。對于間接加熱系統(tǒng),尾氣的量要小得多,相應尾氣處理的負擔要輕得多。西格斯干燥設備的尾氣經(jīng)冷凝、水洗后送回燃燒爐,將產(chǎn)生臭味的化合物分解,所以其尾氣能滿足很嚴格的排放標準。