鋼閘門防滲排水設(shè)計 根據(jù)閘上下游大水位差和地基條件,并參考工程實踐,確定地下輪廓線(即由防滲設(shè)施與不透水底板共同組成滲流區(qū)域的上部不透水邊界)布置,須沿地下輪廓線的滲流平均坡降和出逸坡降在允許范圍以內(nèi),并進行滲透水壓力和抗?jié)B性計算。在滲逸面上應鋪設(shè)反濾層和設(shè)置排水溝槽(或減壓井),盡快地、安全地將滲水排至下游。兩岸的防滲排水設(shè)計與閘基的基本相同。結(jié)構(gòu)設(shè)計 根據(jù)運用要求和地質(zhì)條件,選定閘室結(jié)構(gòu)和閘門形式,妥善布置閘室上部結(jié)構(gòu)。分析作用于水閘上的荷載及其組合,進行閘室和翼墻等的抗滑計算、地基應力和沉陷計算,必要時,應結(jié)合地質(zhì)條件和結(jié)構(gòu)特點研究確定地基處理方案。對組成水閘的各部建筑物(鋼閘門包括閘門),根據(jù)其工作特點,進行結(jié)構(gòu)計算。
南充鋼閘門廠現(xiàn)貨提供主營產(chǎn)品:鋼閘門我公司主導產(chǎn)品有:QL-0.3T-200T單吊點、雙吊點螺桿式啟閉機。具有手推帶鎖式、封閉手搖式和手電兩用式螺桿啟閉機等。QPQ、QPK5T-200T固定式、式、單、雙吊點卷揚式啟閉機;啟閉機可根據(jù)客戶要求配備遠程控制高度顯示器。閘門有PZ、PGZ型鑄鐵閘門、鑄鐵鑲銅閘門、不銹鋼閘門、插板閘門、拍門(潮門)、堰門、鋼結(jié)構(gòu)閘門(弧形閘門、平面閘門、平面定輪閘門),規(guī)格有:0.2×0.2-10×10米,其中有雙向止水閘門、反向止水閘門、深水閘門、高壓密封箱式閘門和各種橡膠止水。現(xiàn)產(chǎn)品已銷往20多個省市自治區(qū)。廣泛應用于排灌、水電站、河道、水產(chǎn)養(yǎng)殖、水庫、污水處理等水利工程。
南充鋼閘門廠現(xiàn)貨提供主要由閘框和閘板兩大部分組成。
鋼閘門閘框是閘板的支承構(gòu)件,也是閘板的運行滑道,由地腳螺栓安裝固定在水閘閘墩及閘底板的二期混凝土中,將閘板所承受的全部水壓力安全傳遞到閘室中。為科學合理節(jié)約材料及減輕自重,其斷面制成格構(gòu)式,斷面尺寸按所受荷載大小和閘板運行情況綜合考慮。鋼閘門閘板是用來封閉和開啟孔 口的活動擋水構(gòu)件, 板面四周設(shè)鑄鐵邊框梁 , 為閘板的強度 , 板面制成拱形, 拱的圓心角按 6 0 度設(shè)計,以其所受的水壓力。為便于制造、 運輸和安裝 , 閘板可制成上下幾部分 ,待到安裝現(xiàn)場后再用螺栓連接組裝成整體 ,連接處上下板設(shè)置法蘭和筋板使其成為閘板的中間橫梁, 以閘板的縱向剛度 , 在寬度方向設(shè)置縱向筋板 ,以其橫向剛度,同時起到縱梁的作用。
南充鋼閘門廠現(xiàn)貨提供鑄鐵閘門工作原理:
閘板是直接承受水壓力的擋水構(gòu)件, 鋼閘門閘框是閘板四周的支承構(gòu)件, 同時也是閘板上下運動的滑道, 滑道以外部分鑲嵌于閘墩及閘底的二期混凝土中, 將閘板所承受的水壓力均勻地傳遞到閘墩及閘室底部。閘框迎水面四周與閘板框四周背水面處經(jīng)機械精制、 加工刨光后平直光滑、 貼合嚴密, 使結(jié)合面、 止水面與運動滑道合三為一。在啟閉機作用下, 當閘門啟閉運行時, 緊閉斜鐵和閘框滑道確保閘門的縱橫運行軌跡, 在水壓力和緊閉斜鐵的雙重作用下, 確保閘板運行平穩(wěn) , 使閘板與閘框滑道緊密貼合, 從而達到有效止水的目的。
南充鋼閘門廠現(xiàn)貨提供水庫除險加固工程的重要部分,其投資在工程總投資中所占比例較高。本省水利工程壩(堤)基截滲實踐經(jīng)歷了一段曲折的路程,既有成功的,也有許多深刻的教訓,有些問題有待于做進一步的研究。本論文以山東省水利工程壩(堤)基截滲典型實例為依托,緊密聯(lián)系工程實際,對壩(堤)基截滲的理論與實踐進行,分析、解釋在截滲工程中遇到的疑難問題,歸納不同截滲措施的應用條件及適用范圍,論述如何選擇佳截滲方案以及在截滲工程設(shè)計、施工中應注意的問題。截滲方案應結(jié)合地層條件、水頭、造價進行選擇,不可一味地照搬其它工程。本省山丘區(qū)水庫大壩高度一般在20~50米之間,對壩埋深小于5米的透水層,可采用挖槽回填粘土分層夯實的方案;對壩埋深大于5米的透水層,可采用小直徑攪拌樁進行處理;由于垂直鋪塑施工需泥漿固壁,且為連續(xù)開槽,因此在壩不宜采用垂直鋪塑截滲;對承受水頭小于15米,可灌性的砂礫石層壩基,可考慮采用高壓墻隨著社會生產(chǎn)規(guī)模的擴大、生產(chǎn)水平的,電氣控制技術(shù)和液壓技術(shù)都在非常迅速的發(fā)展。電氣控制從繼電器控制發(fā)展到直接數(shù)字控制(DDC)、集散控制(DCS)到目前的現(xiàn)場總線控制(FCS)。現(xiàn)代的液壓傳動及控制技術(shù)已發(fā)展成一門集傳動、控制、檢測、計算機一體化的完整的自動化技術(shù),并逐步趨向數(shù)字控制和全自動化。文章從結(jié)合所研究的水電站的實際需要出發(fā),將先進的現(xiàn)場總線技術(shù)、以太網(wǎng)技術(shù)與的液壓技術(shù)相結(jié)合,并應用到水電站閘門監(jiān)控的實際設(shè)計中。論文根據(jù)所研究水電站閘門控制的具體技術(shù)要求,設(shè)計了適合該水電站的液壓啟閉機。文章對閘門啟閉機及其控制的發(fā)展狀況和液壓啟閉機控制的局限性進行了詳細分析,并結(jié)合當前控制技術(shù),特別是Profibus現(xiàn)場總線控制技術(shù)的特點,針對所研究的水電站的實際情況提出了"基于Profibus現(xiàn)場總線控制和以太網(wǎng)技術(shù)的閘門監(jiān)控"的技術(shù)方案。并根據(jù)該方案完成了下位機(PLC控制程序)的水庫大壩風險分析和預警作為大壩安全的延續(xù)和加強,包括一系列的分析、評價和實施,主要包括病險水庫大壩隱患病害挖掘、風險分析、預警的架構(gòu)、警兆辨識模型、降險減災及應急預案等。豐要研究內(nèi)容如下:(1)研究分析了病險水庫大壩隱患病害的機理及成因,對可能失事的病害進行識別,挖掘出病險水庫大壩的實用失事集。并采用諾埃曼風險率的模型,提出一種定性和定量相結(jié)合的確定大壩風險率融合。(2)提出用ISODATA法和模糊綜合評判法對專家權(quán)重進行修正,估算了大壩風險度。借鑒國外發(fā)達可接受風險研究成果,從個人、社會、經(jīng)濟和四方面研究了病險水庫大壩的可接受風險,提出適合我國國情的可接受風險指標。(3)構(gòu)建了基于Web GIS的病險水庫大壩預警架構(gòu),在此基礎(chǔ)上,研究了預警指標的分類、預警指標篩選的條件和原則以及指標體系的構(gòu)建。(4)研究了大壩風險預警中的警兆指標體系和確定,提出了土石壩和混凝土壩.-